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Am. J. Hum. Genet. 61:765–768, 1997 recently been mapped to 6p25 (Mears et al. 1996),
further indicating that these four iris-hypoplasia dis-
orders do not represent variable expression of theAutosomal Dominant Axenfeld-Rieger Anomaly Maps
same locus. We have now tested a family with ARAto 6p25
to determine whether the disease phenotype is linked

To the Editor: to either of the previously described critical regions,
at 4q25 or 6p25.After the recent genetic localization of the ocular genetic

disorder iridogoniodysgenesis anomaly to 6p25 (Mears Clinical examinations of 13 members of a family re-
vealed 7 to be affected with ARA (fig. 1). Individualset al. 1996), we now provide evidence that a second

disorder of the anterior chamber of the eye, Axenfeld- diagnosed with ARA had a prominent and anteriorly
displaced Schwalbe’s line, iris stromal hypoplasia, andRieger anomaly (ARA), maps to the same chromosomal

location. ARA is a neurocristopathy that presents corectopia (fig. 2). Nonocular features of ARS (including
jaw, dental, and umbilical anomalies) were not present.with ocular features including a prominent, anteriorly

displaced Schwalbe’s line (posterior embryotoxon) The study and collection of blood samples from all indi-
viduals included in this report were approved by theattached to strands of peripheral iris bridging the irido-

corneal angle, displaced pupils (corectopia), and iris hy- Research Ethics Board of the Faculty of Medicine of
the University of Alberta. Microsatellite analysis waspoplasia (Shields 1983). Axenfeld-Rieger syndrome

(ARS) has the same ocular features as ARA, in addition performed by use of oligonucleotide primers from Re-
search Genetics. Microsatellite markers had 35S dATPto nonocular findings that include a dysmorphic mid-

face, redundant periumbilical skin, and dental anomalies directly incorporated into PCR products, as described
elsewhere (Mirzayans et al. 1995). PCR products wereincluding oligodontia and microdontia (Alward and

Murray 1995). separated on 6% polyacrylamide gels. Linkage analysis
was conducted as described elsewhere (Mears et al.Iridogoniodysgenesis anomaly (IGDA) and iridogo-

niodysgenesis syndrome (IGDS) are two related ocular 1996). Analysis was conducted under the conservative
assumption that ARA is an autosomal dominant disor-disorders. Similar to ARA, patients with IDGA present

with ocular features alone, including iridocorneal angle- der with 95% penetrance, although there is no evidence
of reduced penetrance. Linkage to the ARS/IGDS regiondifferentiation abnormalities, hypoplasia of the anterior

stromal layer of the iris, and increased intraocular pres- at 4q25 was excluded by examination of polymorphic
sure leading to juvenile glaucoma (Pearce et al. 1983;
Mears et al. 1996). IGDS has the same ocular features
as IGDA, with the additional nonocular features of ARS,
including dental and umbilical abnormalities. All four
clinically related anterior-segment iris-hypoplasia disor-
ders (ARA, ARS, IGDA, and IGDS) are autosomal domi-
nant disorders resulting in glaucoma in 50%–75% of
cases.

Linkage analysis has mapped the ARS gene to 4q25
(Murray et al. 1992). Recently, mutations in the gene,
RIEG, have been shown to underlie the ARS phenotype
in ARS families in which the disease is linked to 4q25
(Semina et al. 1996). RIEG is a developmental control
gene of the bicoid homeobox gene family. The mapping
of IGDS to 4q25 raises the possibility that ARS and
IGDS are allelic variants of the same disorder (Héon et
al. 1995; Walter et al. 1996).

Figure 1 Family demonstrating autosomal dominant ARA, fromHowever, in addition to marked variable expressiv-
western Canada. Males are denoted by squares, and females are de-ity, Axenfeld-Rieger/iridogoniodysgenesis eye forma-
noted by circles; unblackened symbols denote individuals who were

tions are genetically heterogeneous. Legius et al. not examined, blackened symbols denote individuals who were exam-
(1994) described a family with ARA that did not map ined and found to be affected with ARA, and a symbols containing

an ‘‘N’’ denote individuals who were examined and found to be unaf-to 4q25, consistent with genetic heterogeneity in Ax-
fected. A diagonal line through a symbol indicates that the individualenfeld-Rieger eye malformations. A second locus for
is deceased. Individual II:5 is deceased and was not examined but isARS has been recently mapped to 13q14 (Phillips et
presumed to have been affected, because he has an affected son (III:9)

al. 1996); however, the sensory hearing loss reported and ARA has not been reported with nonpenetrance. Linkage analysis
in this ARS family suggests that the ARS loci at 4q25 was conducted, however, under the conservative assumption of 95%

penetrance.and 13q14 can be distinguished clinically. IGDA has
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These results represent the first localization of a locus
for ARA, distinct from the localizations of ARS at 4q25
and 13q14. Our results are consistent with the observa-
tions of genetic heterogeneity among the four iris-hypo-
plasia phenotypes (Legius et al. 1994; Mears et al.
1996). In addition to ARA/IGDA, individuals with 6p
deletions have also been identified who have aniridia
(Levin et al. 1986) and Peters anomaly (Reid et al. 1983).
We suggest that this region at the distal end of the short
arm of chromosome 6 contains a locus or loci of impor-
tance for development of the anterior segment of the
eye. Efforts are currently underway to reduce the 6.4-
cM minimum critical region(s) for ARA and IGDA prior

Figure 2 Photograph of the right eye of affected member III:1 to conducting gene-isolation experiments to identify and
of the ARA pedigree. The photograph shows a prominent, centrally clone the gene(s) responsible for anterior-segment phe-
displaced Schwalbe’s line that is detached from the cornea and crosses notypes.
the anterior chamber (white line across iris), in addition to marked

ARA maps to 6p25 and thus colocalizes with IGDA.iris stromal hypoplasia and a superiorly displaced pupil.
Interestingly, the two iris-hypoplasia anomalies (ARA
and IGDA) in which the phenotype is confined to the
anterior segment of the eye both map to 6p25. The twomarkers in the region (table 1), by use of the criterion
related syndromes (ARS and IGDS) that present withof a LOD score £02 as evidence of exclusion of linkage
the typical nonocular features both map to 4q25, and(Morton 1955). For ARA, significant linkage was dem-
the ARS with sensory hearing loss in addition to theonstrated to the IGDA critical region at 6p25. A maxi-
typical ARS features maps to 13q14. The clinical diag-mum LOD score (Zmax) of 3.31 was obtained with
nostic criteria currently used to distinguish Axenfeld-marker D6S344 at a maximum recombination fraction
Rieger and iridogoniodysgenesis eye malformations ap-(umax) of .00 (table 1), indicating that ARA is signifi-
parently do not reflect the genetic basis of the disorders.cantly linked to markers on the distal short arm of chro-
Instead, our results suggest that the presence or absencemosome 6 (6p25). These results are consistent with the
of nonocular features appears to be a fundamental diag-likely hypothesis that ARA and IGDA are allelic; how-
nostic criterion for determining which genetic locus un-ever, it remains a possibility that two or more genes
derlies these iris-hypoplasia phenotypes.involved in the formation of the anterior segment of the

ARA, IGDA, aniridia, and Peter anomaly all appeareye are located at 6p25 and that mutations of different
to fall into an overlapping spectrum of anterior-segmentgenes underlie the related ARA and IGDA phenotypes. A
disorders. Genes responsible for anterior-segment mal-key recombinant in this ARA pedigree (fig. 1, individual
formations have now been mapped to a variety of chro-III:1) reduces the ARA critical region to a 6.4-cM inter-

val between markers D6S1600 and D6S1617 (fig. 3). mosomes, including 4, 6, 11, and 13 (Jordan et al. 1992;

Table 1

Linkage to 4q25 and 6p25

LOD SCORE AT RECOMBINATION FRACTION OF

LOCUS .00 .05 .10 .20 .40 ZMAX uMAX

ARA vs. 4q25 loci:
D4S3256 07.68 02.93 02.07 01.12 0.22 . . . . . .
D4S2623 08.48 01.70 01.03 0.44 0.05 . . . . . .

ARA vs. 6p25 loci:
D6S1600 1.51 1.39 1.25 .96 .32 1.51 .00
D6S942 2.60 2.35 2.08 1.51 .34 2.60 .00
D6S344 3.31 3.03 2.74 2.13 .74 3.31 .00
D6S967 2.88 2.62 2.35 1.76 .49 2.88 .00
D6S1617 07.68 .57 .72 .69 .29 .74 .13
D6S1713 05.59 1.38 1.48 1.34 .57 1.48 .10
D6S477 06.45 1.05 1.20 1.14 .46 1.22 .13
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Figure 3 Schematic presentation of chromosome 6, modified from the study by Mears et al. (1996), illustrating the location of the 6.4-
cM ARA/IGDA critical interval. Cumulative genetic distances (in cM; obtained from Genome Database) from the telomere are indicated to
the left of the idiogram. Key individuals from the study by Mears et al. (1996) (IGDA families A and B) and this study are indicated at the
top, and disease status is indicated at the bottom. Blackened rectangles denote the region cosegregating with the disease in the respective
families.
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In this equation, relating time, recombination rate, and
the divergence (lnP) of haplotypes, we recognize the ge-

Am. J. Hum. Genet. 61:768–771, 1997 netic clock, by analogy to the molecular clock (Zucker-
kandl and Pauling 1965) that relates time, mutation rate,
and the divergence of genes.The Genetic Clock and the Age of the Founder Effect

In a recent study of idiopathic torsion dystonia (ITD),in Growing Populations: A Lesson from French
an autosomal dominant disease, equation (1) was ap-Canadians and Ashkenazim
plied to estimate the age of the founder effect in Ashke-

To the Editor: nazi Jews from eastern Europe (Risch et al. 1995b).
Strong linkage disequilibrium over a considerable ge-Use of the genetic clock with molecular data allows anal-

ysis of the occurrence of genetic events in the context netic distance around the ITD locus indicated a founder
effect whose origin was estimated by the authors as be-of population histories. These analyses suggest that the

majority of disease mutations present at variable fre- ing at the middle of the 17th century (time range 1400–
1750). At that time however, the Jewish population ofquencies among human populations have been spread

by neutral mechanisms related to migration and demo- eastern Europe was already reaching hundreds of thou-
sands, and numbered §10,000 individuals in 1400 (Bar-graphic expansion. In human genetics, ‘‘founder effect’’

refers to the presence of genetic disorders that are either navi 1992; Beinart 1992; Motulsky 1995; Risch et al.
1995a, 1995b; Zoosman-Diskin 1995). This would putendemic to an isolated population or very rare elsewhere

(Diamond and Rotter 1987); it is observed in small hu- the initial ITD mutation frequency at 1004–1005, too
low to explain, on the ground of demographic growthman isolates such as Tristan da Cunha (Roberts 1968)

and in populations as large as that of Europe (Kerem et alone, its current frequency of 2–6 1 1003. To resolve
the discrepancy between the demographic and the ge-al. 1989). New reports rekindle interest in the origin

of founder effects: Do they involve neutral mechanisms netic data in the case of ITD, social selection was pro-
posed, whereby the present-day Ashkenazim descended(migration and drift)? Are they due to a selection in

response to the environmental challenge or to other from a smaller, wealthier fraction of the original popula-
tion, a fraction with the higher survival rate (Motulskycauses? Molecular approaches provide new insights into

the underlying mechanisms. Here we discuss the use of 1995; Risch et al. 1995b).
Social selection could have influenced the genetic pro-linkage-disequilibrium data to estimate the age of

founder effects in Ashkenazi Jews from eastern Europe file of the present-day Ashkenazi population and seems
to provide a good collective explanation for an elevated(Motulsky 1995) and in French Canadians from the

Charlevoix-Saguenay region (De Braekeleer 1991), pop- frequency of a number of unrelated recessive disorders
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